Reduction principle for Gaussian K-inequality
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00559681" target="_blank" >RIV/67985840:_____/22:00559681 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/22:10456527 RIV/68407700:21230/22:00363544
Result on the web
<a href="https://doi.org/10.1016/j.jmaa.2022.126522" target="_blank" >https://doi.org/10.1016/j.jmaa.2022.126522</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2022.126522" target="_blank" >10.1016/j.jmaa.2022.126522</a>
Alternative languages
Result language
angličtina
Original language name
Reduction principle for Gaussian K-inequality
Original language description
We study interpolation properties of operators (not necessarily linear) which satisfy a specific K-inequality corresponding to endpoints defined in terms of Orlicz-Karamata spaces modeled upon the example of the Gaussian-Sobolev embedding. We prove a reduction principle for a fairly wide class of such operators.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
1096-0813
Volume of the periodical
516
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
126522
UT code for WoS article
000911193700006
EID of the result in the Scopus database
2-s2.0-85135027088