All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fully computable a posteriori error bounds for eigenfunctions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00561025" target="_blank" >RIV/67985840:_____/22:00561025 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00211-022-01304-0" target="_blank" >https://doi.org/10.1007/s00211-022-01304-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00211-022-01304-0" target="_blank" >10.1007/s00211-022-01304-0</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fully computable a posteriori error bounds for eigenfunctions

  • Original language description

    For compact self-adjoint operators in Hilbert spaces, two algorithms are proposed to provide fully computable a posteriori error estimate for eigenfunction approximation. Both algorithms apply well to the case of tight clusters and multiple eigenvalues, under the settings of target eigenvalue problems. Algorithm I is based on the Rayleigh quotient and the min-max principle that characterizes the eigenvalue problems. The formula for the error estimate provided by Algorithm I is easy to compute and applies to problems with limited information of Rayleigh quotients. Algorithm II, as an extension of the Davis–Kahan method, takes advantage of the dual formulation of differential operators along with the Prager–Synge technique and provides greatly improved accuracy of the estimate, especially for the finite element approximations of eigenfunctions. Numerical examples of eigenvalue problems of matrices and the Laplace operators over convex and non-convex domains illustrate the efficiency of the proposed algorithms.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA20-01074S" target="_blank" >GA20-01074S: Adaptive methods for the numerical solution of partial differential equations: analysis, error estimates and iterative solvers</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Numerische Mathematik

  • ISSN

    0029-599X

  • e-ISSN

    0945-3245

  • Volume of the periodical

    152

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    39

  • Pages from-to

    183-221

  • UT code for WoS article

    000824307900001

  • EID of the result in the Scopus database

    2-s2.0-85134293670