Quantifying properties (K) and (µs)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00570593" target="_blank" >RIV/67985840:_____/23:00570593 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1002/mana.202100198" target="_blank" >https://doi.org/10.1002/mana.202100198</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.202100198" target="_blank" >10.1002/mana.202100198</a>
Alternative languages
Result language
angličtina
Original language name
Quantifying properties (K) and (µs)
Original language description
A Banach space X has property (K), whenever every weak* null sequence in the dual space admits a convex block subsequence (Formula presented.) so that (Formula presented.) as (Formula presented.) for every weakly null sequence (Formula presented.) in X, X has property (Formula presented.) if every weak* null sequence in (Formula presented.) admits a subsequence so that all of its subsequences are Cesàro convergent to 0 with respect to the Mackey topology. Both property (Formula presented.) and reflexivity (or even the Grothendieck property) imply property (K). In this paper, we propose natural ways for quantifying the aforementioned properties in the spirit of recent results concerning other familiar properties of Banach spaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
1522-2616
Volume of the periodical
296
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
17
Pages from-to
996-1012
UT code for WoS article
000898162900001
EID of the result in the Scopus database
2-s2.0-85144009582