Cosimplicial meromorphic functions cohomology on complex manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00573349" target="_blank" >RIV/67985840:_____/23:00573349 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1142/S0129055X23300029" target="_blank" >https://doi.org/10.1142/S0129055X23300029</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0129055X23300029" target="_blank" >10.1142/S0129055X23300029</a>
Alternative languages
Result language
angličtina
Original language name
Cosimplicial meromorphic functions cohomology on complex manifolds
Original language description
Developing ideas of [B. L. Feigin, Conformal field theory and cohomologies of the Lie algebra of holomorphic vector fields on a complex curve, in Proc. Int. Congress of Mathematicians (Kyoto, 1990 ), Vols. 1 and 2 (Mathematical Society of Japan, Tokyo, 1991), pp. 71-85], we introduce canonical cosimplicial cohomology of meromorphic functions for infinite-dimensional Lie algebra formal series with prescribed analytic behavior on domains of a complex manifold M. Graded differential cohomology of a sheaf of Lie algebras via the cosimplicial cohomology of -formal series for any covering by Stein spaces on M is computed. A relation between cosimplicial cohomology (on a special set of open domains of M) of formal series of an infinite-dimensional Lie algebra and singular cohomology of auxiliary manifold associated to a -module is found. Finally, multiple applications in conformal field theory, deformation theory, and in the theory of foliations are proposed.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Reviews in Mathematical Physics
ISSN
0129-055X
e-ISSN
1793-6659
Volume of the periodical
35
Issue of the periodical within the volume
5
Country of publishing house
SG - SINGAPORE
Number of pages
22
Pages from-to
2330002
UT code for WoS article
000931519500001
EID of the result in the Scopus database
2-s2.0-85148749764