A Borel-Weil theorem for the irreducible quantum flag manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00574186" target="_blank" >RIV/67985840:_____/23:00574186 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/22:10455803
Result on the web
<a href="https://doi.org/10.1093/imrn/rnac193" target="_blank" >https://doi.org/10.1093/imrn/rnac193</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/imrn/rnac193" target="_blank" >10.1093/imrn/rnac193</a>
Alternative languages
Result language
angličtina
Original language name
A Borel-Weil theorem for the irreducible quantum flag manifolds
Original language description
We establish a noncommutative generalisation of the Borel-Weil theorem for the Heckenberger-Kolb calculi of the irreducible quantum f lag manifolds O (q)(G/L-S), generalising previous work for the quantum Grassmannians O (q)(Gr(n),(m)). As a direct consequence we get a novel noncommutative differential geometric presentation of the quantum coordinate rings S-q[G/L-S] of the irreducible quantum f lag manifolds. The proof is formulated in terms of quantum principal bundles, and the recently introduced notion of a principal pair, and uses the Heckenberger and Kolb first-order differential calculus for the quantum Possion homogeneous spaces O (q)(G/L-S(s)).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ20-17488Y" target="_blank" >GJ20-17488Y: Applications of C*-algebra classification: dynamics, geometry, and their quantum analogues</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Mathematics Research Notices
ISSN
1073-7928
e-ISSN
1687-0247
Volume of the periodical
2023
Issue of the periodical within the volume
15
Country of publishing house
US - UNITED STATES
Number of pages
30
Pages from-to
12977-13006
UT code for WoS article
000827217200001
EID of the result in the Scopus database
2-s2.0-85168386178