All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Borel-Weil theorem for the irreducible quantum flag manifolds

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00574186" target="_blank" >RIV/67985840:_____/23:00574186 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/22:10455803

  • Result on the web

    <a href="https://doi.org/10.1093/imrn/rnac193" target="_blank" >https://doi.org/10.1093/imrn/rnac193</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/imrn/rnac193" target="_blank" >10.1093/imrn/rnac193</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Borel-Weil theorem for the irreducible quantum flag manifolds

  • Original language description

    We establish a noncommutative generalisation of the Borel-Weil theorem for the Heckenberger-Kolb calculi of the irreducible quantum f lag manifolds O (q)(G/L-S), generalising previous work for the quantum Grassmannians O (q)(Gr(n),(m)). As a direct consequence we get a novel noncommutative differential geometric presentation of the quantum coordinate rings S-q[G/L-S] of the irreducible quantum f lag manifolds. The proof is formulated in terms of quantum principal bundles, and the recently introduced notion of a principal pair, and uses the Heckenberger and Kolb first-order differential calculus for the quantum Possion homogeneous spaces O (q)(G/L-S(s)).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ20-17488Y" target="_blank" >GJ20-17488Y: Applications of C*-algebra classification: dynamics, geometry, and their quantum analogues</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Mathematics Research Notices

  • ISSN

    1073-7928

  • e-ISSN

    1687-0247

  • Volume of the periodical

    2023

  • Issue of the periodical within the volume

    15

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    30

  • Pages from-to

    12977-13006

  • UT code for WoS article

    000827217200001

  • EID of the result in the Scopus database

    2-s2.0-85168386178