On the homotopy hypothesis for 3-groupoids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00575355" target="_blank" >RIV/67985840:_____/23:00575355 - isvavai.cz</a>
Result on the web
<a href="http://www.tac.mta.ca/tac/volumes/39/26/39-26.pdf" target="_blank" >http://www.tac.mta.ca/tac/volumes/39/26/39-26.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the homotopy hypothesis for 3-groupoids
Original language description
We show that if the canonical left semi-model structure on the category of Grothendieck n-groupoids exists, then it satisfies the homotopy hypothesis, i.e. the associated (∞, 1)-category is equivalent to that of homotopy n-types, thus generalizing a result of the first-named author. As a corollary of the second named author’s proof of the existence of the canonical left semi-model structure for Grothendieck 3-groupoids, we obtain a proof of the homotopy hypothesis for Grothendieck 3-groupoids.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theory and Applications of Categories
ISSN
1201-561X
e-ISSN
—
Volume of the periodical
39
Issue of the periodical within the volume
26
Country of publishing house
CA - CANADA
Number of pages
35
Pages from-to
735-768
UT code for WoS article
001059377800001
EID of the result in the Scopus database
2-s2.0-85169415289