All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the homotopy hypothesis for 3-groupoids

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00575355" target="_blank" >RIV/67985840:_____/23:00575355 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.tac.mta.ca/tac/volumes/39/26/39-26.pdf" target="_blank" >http://www.tac.mta.ca/tac/volumes/39/26/39-26.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the homotopy hypothesis for 3-groupoids

  • Original language description

    We show that if the canonical left semi-model structure on the category of Grothendieck n-groupoids exists, then it satisfies the homotopy hypothesis, i.e. the associated (∞, 1)-category is equivalent to that of homotopy n-types, thus generalizing a result of the first-named author. As a corollary of the second named author’s proof of the existence of the canonical left semi-model structure for Grothendieck 3-groupoids, we obtain a proof of the homotopy hypothesis for Grothendieck 3-groupoids.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Theory and Applications of Categories

  • ISSN

    1201-561X

  • e-ISSN

  • Volume of the periodical

    39

  • Issue of the periodical within the volume

    26

  • Country of publishing house

    CA - CANADA

  • Number of pages

    35

  • Pages from-to

    735-768

  • UT code for WoS article

    001059377800001

  • EID of the result in the Scopus database

    2-s2.0-85169415289