All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Inviscid limit for the compressible Navier-Stokes equations with density dependent viscosity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00583148" target="_blank" >RIV/67985840:_____/24:00583148 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jde.2024.01.045" target="_blank" >https://doi.org/10.1016/j.jde.2024.01.045</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jde.2024.01.045" target="_blank" >10.1016/j.jde.2024.01.045</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Inviscid limit for the compressible Navier-Stokes equations with density dependent viscosity

  • Original language description

    We consider the compressible Navier-Stokes system describing the motion of a barotropic fluid with density dependent viscosity confined in a three-dimensional bounded domain Ω. We show the convergence of the weak solution to the compressible Navier-Stokes system to the strong solution to the compressible Euler system when the viscosity and the damping coefficients tend to zero.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA22-01591S" target="_blank" >GA22-01591S: Mathematical theory and numerical analysis for equations of viscous newtonian compressible fluids</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Differential Equations

  • ISSN

    0022-0396

  • e-ISSN

    1090-2732

  • Volume of the periodical

    390

  • Issue of the periodical within the volume

    5 May

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    56

  • Pages from-to

    370-425

  • UT code for WoS article

    001183319300001

  • EID of the result in the Scopus database

    2-s2.0-85184808245