Matrix representations of arbitrary bounded operators on Hilbert spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00583468" target="_blank" >RIV/67985840:_____/24:00583468 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1515/crelle-2023-0095" target="_blank" >https://doi.org/10.1515/crelle-2023-0095</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/crelle-2023-0095" target="_blank" >10.1515/crelle-2023-0095</a>
Alternative languages
Result language
angličtina
Original language name
Matrix representations of arbitrary bounded operators on Hilbert spaces
Original language description
We show that under natural and quite general assumptions, a large part of a matrix for a bounded linear operator on a Hilbert space can be preassigned. The result is obtained in a more general setting of operator tuples leading to interesting consequences, e.g., when the tuple consists of powers of a single operator. We also prove several variants of this result of independent interest. The paper substantially extends former research on matrix representations in infinite-dimensional spaces dealing mainly with prescribing the main diagonals.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF20-22230L" target="_blank" >GF20-22230L: Banach spaces of continuous and Lipschitz functions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal für die Reine und Angewandte Mathematik: Crelles journal
ISSN
0075-4102
e-ISSN
1435-5345
Volume of the periodical
2024
Issue of the periodical within the volume
808
Country of publishing house
DE - GERMANY
Number of pages
31
Pages from-to
111-141
UT code for WoS article
001142320800001
EID of the result in the Scopus database
2-s2.0-85182584344