All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Matrix representations of arbitrary bounded operators on Hilbert spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00583468" target="_blank" >RIV/67985840:_____/24:00583468 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1515/crelle-2023-0095" target="_blank" >https://doi.org/10.1515/crelle-2023-0095</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/crelle-2023-0095" target="_blank" >10.1515/crelle-2023-0095</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Matrix representations of arbitrary bounded operators on Hilbert spaces

  • Original language description

    We show that under natural and quite general assumptions, a large part of a matrix for a bounded linear operator on a Hilbert space can be preassigned. The result is obtained in a more general setting of operator tuples leading to interesting consequences, e.g., when the tuple consists of powers of a single operator. We also prove several variants of this result of independent interest. The paper substantially extends former research on matrix representations in infinite-dimensional spaces dealing mainly with prescribing the main diagonals.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GF20-22230L" target="_blank" >GF20-22230L: Banach spaces of continuous and Lipschitz functions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal für die Reine und Angewandte Mathematik: Crelles journal

  • ISSN

    0075-4102

  • e-ISSN

    1435-5345

  • Volume of the periodical

    2024

  • Issue of the periodical within the volume

    808

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    31

  • Pages from-to

    111-141

  • UT code for WoS article

    001142320800001

  • EID of the result in the Scopus database

    2-s2.0-85182584344