Weak solutions to the heat conducting compressible self-gravitating flows in time-dependent domains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00584769" target="_blank" >RIV/67985840:_____/24:00584769 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1142/S0218202524500118" target="_blank" >https://doi.org/10.1142/S0218202524500118</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218202524500118" target="_blank" >10.1142/S0218202524500118</a>
Alternative languages
Result language
angličtina
Original language name
Weak solutions to the heat conducting compressible self-gravitating flows in time-dependent domains
Original language description
In this paper, we consider the heat-conducting compressible self-gravitating fluids in time-dependent domains, which typically describe the motion of viscous gaseous stars. The flow is governed by the 3D Navier-Stokes-Fourier-Poisson equations where the velocity is supposed to fulfill the full-slip boundary condition and the temperature on the boundary is given by a non-homogeneous Dirichlet condition. We establish the global-in-time weak solution to the system. Our approach is based on the penalization of the boundary behavior, viscosity, and the pressure in the weak formulation. Moreover, to accommodate the non-homogeneous boundary heat flux, the concept of ballistic energy is utilized in this work.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GC22-08633J" target="_blank" >GC22-08633J: Qualitative Theory of the MHD and Related Equations</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Models and Methods in Applied Sciences
ISSN
0218-2025
e-ISSN
1793-6314
Volume of the periodical
34
Issue of the periodical within the volume
4
Country of publishing house
SG - SINGAPORE
Number of pages
46
Pages from-to
659-704
UT code for WoS article
001189895800004
EID of the result in the Scopus database
2-s2.0-85188740174