Restricted injective dimensions over Cohen-Macaulay rings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00585944" target="_blank" >RIV/67985840:_____/24:00585944 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s10468-024-10262-0" target="_blank" >https://doi.org/10.1007/s10468-024-10262-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10468-024-10262-0" target="_blank" >10.1007/s10468-024-10262-0</a>
Alternative languages
Result language
angličtina
Original language name
Restricted injective dimensions over Cohen-Macaulay rings
Original language description
We show that the small and large restricted injective dimensions coincide for Cohen-Macaulay rings of finite Krull dimension. Based on this, and inspired by the recent work of Sather-Wagstaff and Totushek, we suggest a new definition of Cohen-Macaulay Hom injective dimension. We show that the class of Cohen-Macaulay Hom injective modules is the right constituent of a perfect cotorsion pair. Our approach relies on tilting theory, and in particular, on the explicit construction of the tilting module inducing the minimal tilting class recently obtained in (Hrbek et al. 2022).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA23-05148S" target="_blank" >GA23-05148S: Homological and structural theory in geometric contexts</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Algebras and Representation Theory
ISSN
1386-923X
e-ISSN
1572-9079
Volume of the periodical
27
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
21
Pages from-to
1373-1393
UT code for WoS article
001187407900002
EID of the result in the Scopus database
2-s2.0-85188083538