Numerical ranges of antilinear operators
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00586519" target="_blank" >RIV/67985840:_____/24:00586519 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00020-024-02768-5" target="_blank" >https://doi.org/10.1007/s00020-024-02768-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00020-024-02768-5" target="_blank" >10.1007/s00020-024-02768-5</a>
Alternative languages
Result language
angličtina
Original language name
Numerical ranges of antilinear operators
Original language description
We study numerical ranges of antilinear operators on both Hilbert and Banach spaces. We prove that the numerical range of an antilinear operator on at least two-dimensional space is always a disc, and so a convex set. This improves existing results. We also study other properties known for numerical ranges of linear operators and discuss similarities and differences in the antilinear setting.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Integral Equations and Operator Theory
ISSN
0378-620X
e-ISSN
1420-8989
Volume of the periodical
96
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
15
Pages from-to
17
UT code for WoS article
001228649400001
EID of the result in the Scopus database
2-s2.0-85193952996