Complex-self-adjointness
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00363878" target="_blank" >RIV/68407700:21340/23:00363878 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s13324-022-00740-3" target="_blank" >https://doi.org/10.1007/s13324-022-00740-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13324-022-00740-3" target="_blank" >10.1007/s13324-022-00740-3</a>
Alternative languages
Result language
angličtina
Original language name
Complex-self-adjointness
Original language description
We develop the concept of operators in Hilbert spaces which are similar to their adjoints via antiunitary operators, the latter being not necessarily involutive. We discuss extension theory, refined polar and singular-value decompositions, and antilinear eigenfunction expansions. The study is motivated by physical symmetries in quantum mechanics with non-self-adjoint operators.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX20-17749X" target="_blank" >GX20-17749X: New challenges for spectral theory: geometry, advanced materials and complex fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Analysis and Mathematical Physics
ISSN
1664-2368
e-ISSN
1664-235X
Volume of the periodical
13
Issue of the periodical within the volume
6
Country of publishing house
CH - SWITZERLAND
Number of pages
24
Pages from-to
—
UT code for WoS article
000890265500001
EID of the result in the Scopus database
2-s2.0-85142840446