All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On complementability of c α in spaces C(K x L )

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00588552" target="_blank" >RIV/67985840:_____/24:00588552 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1090/proc/16262" target="_blank" >https://doi.org/10.1090/proc/16262</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/proc/16262" target="_blank" >10.1090/proc/16262</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On complementability of c α in spaces C(K x L )

  • Original language description

    Using elementary probabilistic methods, in particular a variant of theWeak Law of Large Numbers related to the Bernoulli distribution, we prove that for every infinite compact spaces K and L the product K × L admits a sequence (μn : n ∈ N) of normalized signed measures with finite supports which converges to 0 with respect to the weak*topology of the dual Banach space C(K × L)*. Our approach is completely constructive-the measures μn are defined by an explicit simple formula. We also show that this result generalizes the classical theorem of Cembranos [Proc. Amer. Math. Soc. 91 (1984), pp. 556-558] and Freniche [Math. Ann. 267 (1984), pp. 479-486] which states that for every infinite compact spaces K and L the Banach space C(K × L) contains a complemented copy of the space c0.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GF20-22230L" target="_blank" >GF20-22230L: Banach spaces of continuous and Lipschitz functions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the American Mathematical Society

  • ISSN

    0002-9939

  • e-ISSN

    1088-6826

  • Volume of the periodical

    152

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    3777-3784

  • UT code for WoS article

    001279003300001

  • EID of the result in the Scopus database

    2-s2.0-85200632899