On complementability of c α in spaces C(K x L )
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00588552" target="_blank" >RIV/67985840:_____/24:00588552 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1090/proc/16262" target="_blank" >https://doi.org/10.1090/proc/16262</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/proc/16262" target="_blank" >10.1090/proc/16262</a>
Alternative languages
Result language
angličtina
Original language name
On complementability of c α in spaces C(K x L )
Original language description
Using elementary probabilistic methods, in particular a variant of theWeak Law of Large Numbers related to the Bernoulli distribution, we prove that for every infinite compact spaces K and L the product K × L admits a sequence (μn : n ∈ N) of normalized signed measures with finite supports which converges to 0 with respect to the weak*topology of the dual Banach space C(K × L)*. Our approach is completely constructive-the measures μn are defined by an explicit simple formula. We also show that this result generalizes the classical theorem of Cembranos [Proc. Amer. Math. Soc. 91 (1984), pp. 556-558] and Freniche [Math. Ann. 267 (1984), pp. 479-486] which states that for every infinite compact spaces K and L the Banach space C(K × L) contains a complemented copy of the space c0.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF20-22230L" target="_blank" >GF20-22230L: Banach spaces of continuous and Lipschitz functions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the American Mathematical Society
ISSN
0002-9939
e-ISSN
1088-6826
Volume of the periodical
152
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
3777-3784
UT code for WoS article
001279003300001
EID of the result in the Scopus database
2-s2.0-85200632899