Hard submatrices for non-negative rank and communication complexity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00599140" target="_blank" >RIV/67985840:_____/24:00599140 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.4230/LIPIcs.CCC.2024.13" target="_blank" >https://doi.org/10.4230/LIPIcs.CCC.2024.13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.CCC.2024.13" target="_blank" >10.4230/LIPIcs.CCC.2024.13</a>
Alternative languages
Result language
angličtina
Original language name
Hard submatrices for non-negative rank and communication complexity
Original language description
Given a non-negative real matrix M of non-negative rank at least r, can we witness this fact by a small submatrix of M? While Moitra (SIAM J. Comput. 2013) proved that this cannot be achieved exactly, we show that such a witnessing is possible approximately: an m × n matrix of non-negative rank r always contains a submatrix with at most r3 rows and columns with non-negative rank at least Ω(log nrlog m). A similar result is proved for the 1-partition number of a Boolean matrix and, consequently, also for its two-player deterministic communication complexity. Tightness of the latter estimate is closely related to the log-rank conjecture of Lovász and Saks.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX19-27871X" target="_blank" >GX19-27871X: Efficient approximation algorithms and circuit complexity</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
39th Computational Complexity Conference (CCC 2024)
ISBN
978-3-95977-331-7
ISSN
1868-8969
e-ISSN
1868-8969
Number of pages
12
Pages from-to
13
Publisher name
Schloss Dagstuhl, Leibniz-Zentrum für Informatik
Place of publication
Dagstuhl
Event location
Ann Arbor
Event date
Jul 22, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—