Betweenness isomorphisms in the plane - The case of a circle and points
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00600582" target="_blank" >RIV/67985840:_____/24:00600582 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1515/advgeom-2024-0027" target="_blank" >https://doi.org/10.1515/advgeom-2024-0027</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/advgeom-2024-0027" target="_blank" >10.1515/advgeom-2024-0027</a>
Alternative languages
Result language
angličtina
Original language name
Betweenness isomorphisms in the plane - The case of a circle and points
Original language description
Two subsets A, B of the plane are betweenness isomorphic if there is a bijection f: A → B such that, for every x, y, z → A, the point f(z) lies on the line segment connecting f(x) and f(y) if and only if z lies on the line segment connecting x and y. In general, it is quite difficult to tell whether two given subsets of the plane are betweenness isomorphic. We concentrate on the case when each of the sets A, B is of the form C ∪ D where C is a circle and D is a finite set. We fully characterize the betweenness isomorphism classes in the family of all circles with three collinear points inside. In particular, we show that there are only countably many isomorphism classes, for which we provide an algebraic description.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX20-31529X" target="_blank" >GX20-31529X: Abstract convergence schemes and their complexities</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Geometry
ISSN
1615-715X
e-ISSN
1615-7168
Volume of the periodical
24
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
20
Pages from-to
473-492
UT code for WoS article
001339249500010
EID of the result in the Scopus database
2-s2.0-85207806092