Characterization of the algebraic difference of special affine Cantor sets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00601754" target="_blank" >RIV/67985840:_____/24:00601754 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.12775/TMNA.2023.057" target="_blank" >https://doi.org/10.12775/TMNA.2023.057</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.12775/TMNA.2023.057" target="_blank" >10.12775/TMNA.2023.057</a>
Alternative languages
Result language
angličtina
Original language name
Characterization of the algebraic difference of special affine Cantor sets
Original language description
We investigate some self-similar Cantor sets C(l, r, p), which we call S-Cantor sets, generated by numbers l, r, p ∈ N, l + r < p. We give a full characterization of the set C(l1, r1, p) − C(l2, r2, p) which can take one of the form: the interval [−1, 1], a Cantor set, an L-Cantorval, an R-Cantorval or an M-Cantorval. As corollaries we give examples of Cantor sets and Cantorvals, which can be easily described using some positional numeral systems.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF20-22230L" target="_blank" >GF20-22230L: Banach spaces of continuous and Lipschitz functions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Topological Methods in Nonlinear Analysis
ISSN
1230-3429
e-ISSN
1230-3429
Volume of the periodical
64
Issue of the periodical within the volume
1
Country of publishing house
PL - POLAND
Number of pages
22
Pages from-to
295-316
UT code for WoS article
001403318800013
EID of the result in the Scopus database
2-s2.0-85209146409