Molecular dynamics simulation of the nanosecond pulsed electric field effect on kinesin nanomotor
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985882%3A_____%2F19%3A00518844" target="_blank" >RIV/67985882:_____/19:00518844 - isvavai.cz</a>
Result on the web
<a href="https://www.nature.com/articles/s41598-019-56052-3.pdf" target="_blank" >https://www.nature.com/articles/s41598-019-56052-3.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-019-56052-3" target="_blank" >10.1038/s41598-019-56052-3</a>
Alternative languages
Result language
angličtina
Original language name
Molecular dynamics simulation of the nanosecond pulsed electric field effect on kinesin nanomotor
Original language description
Kinesin is a biological molecular nanomotor which converts chemical energy into mechanical work. To fulfill various nanotechnological tasks in engineered environments, the function of biological molecular motors can be altered by artificial chemical modifications. The drawback of this approach is the necessity of designing and creating a new motor construct for every new task. We propose that intense nanosecond-scale pulsed electric field could modify the function of nanomotors. To explore this hypothesis, we performed molecular dynamics simulation of a kinesin motor domain docked on a subunit of its microtubule track - a single tubulin heterodimer. In the simulation, we exposed the kinesin motor domain to intense (100MV/m) electric field up to 30ns. We found that both the magnitude and angle of the kinesin dipole moment are affected. Furthermore, we found that the electric field affects contact surface area between kinesin and tubulin, the structure and dynamics of the functionally important kinesin segments, including microtubule binding motifs as well as nucleotide hydrolysis site which power the nanomotor. These findings indicate that external intense nanosecond-scale electric field could alter kinesin behavior. Our results contribute to developing novel electromagnetic methods for modulating the function of biomolecular matter at the nanoscale
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10610 - Biophysics
Result continuities
Project
<a href="/en/project/GA18-23597S" target="_blank" >GA18-23597S: High-frequency microdevices for controlling protein nanomotors</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Scientific Reports
ISSN
2045-2322
e-ISSN
—
Volume of the periodical
9
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
11
Pages from-to
19721
UT code for WoS article
000508904100030
EID of the result in the Scopus database
2-s2.0-85077022714