All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Electro-detachment of kinesin motor domain from microtubule in silico

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985882%3A_____%2F23%3A00570259" target="_blank" >RIV/67985882:_____/23:00570259 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.csbj.2023.01.018" target="_blank" >http://dx.doi.org/10.1016/j.csbj.2023.01.018</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.csbj.2023.01.018" target="_blank" >10.1016/j.csbj.2023.01.018</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Electro-detachment of kinesin motor domain from microtubule in silico

  • Original language description

    Kinesin is a motor protein essential in cellular functions, such as intracellular transport and cell-division, as well as for enabling nanoscopic transport in bio-nanotechnology. Therefore, for effective control of function for nanotechnological applications, it is important to be able to modify the function of kinesin. To cir-cumvent the limitations of chemical modifications, here we identify another potential approach for kinesin control: the use of electric forces. Using full-atom molecular dynamics simulations (247,358 atoms, total time 4.4 mu s), we demonstrate, for the first time, that the kinesin-1 motor domain can be detached from a microtubule by an intense electric field within the nanosecond timescale. We show that this effect is fielddirection dependent and field-strength dependent. A detailed analysis of the electric forces and the work carried out by electric field acting on the microtubule-kinesin system shows that it is the combined action of the electric field pulling on the-tubulin C-terminus and the electric-field-induced torque on the kinesin dipole moment that causes kinesin detachment from the microtubule. It is shown, for the first time in a mechanistic manner, that an electric field can dramatically affect molecular interactions in a heterologous functional protein assembly. Our results contribute to understanding of electromagnetic field-biomatter interactions on a molecular level, with potential biomedical and bio-nanotechnological applications for harnessing control of protein nanomotors.(c) 2023 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-commons.org/licens es/by-nc-nd/4.0/)

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10610 - Biophysics

Result continuities

  • Project

    <a href="/en/project/GX20-06873X" target="_blank" >GX20-06873X: SubTHz on-chip devices for controlling protein nanomachines</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computational and Structural Biotechnology Journal

  • ISSN

    2001-0370

  • e-ISSN

    2001-0370

  • Volume of the periodical

    21

  • Issue of the periodical within the volume

    FEB 2023

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    13

  • Pages from-to

    1349-1361

  • UT code for WoS article

    000933953200001

  • EID of the result in the Scopus database

    2-s2.0-85147798567