Loop permutation affects the topology and stability of G-quadruplexes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F18%3A00501856" target="_blank" >RIV/68081707:_____/18:00501856 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1093/nar/gky757" target="_blank" >http://dx.doi.org/10.1093/nar/gky757</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/nar/gky757" target="_blank" >10.1093/nar/gky757</a>
Alternative languages
Result language
angličtina
Original language name
Loop permutation affects the topology and stability of G-quadruplexes
Original language description
G-quadruplexes are unusual DNA and RNA secondary structures ubiquitous in a variety of organisms including vertebrates, plants, viruses and bacteria. The folding topology and stability of intramolecular G-quadruplexes are determined to a large extent by their loops. Loop permutation is defined as swapping two or three of these regions so that intramolecular G-quadruplexes only differ in the sequential order of their loops. Over the past two decades, both length and base composition of loops have been studied extensively, but a systematic study on the effect of loop permutation has been missing. In the present work, 99 sequences from 21 groups with different loop permutations were tested. To our surprise, both conformation and thermal stability are greatly dependent on loop permutation. Loop permutation actually matters as much as loop length and base composition on G-quadruplex folding, with effects on T-m as high as 17 degrees C. Sequences containing a longer central loop have a high propensity to adopt a stable non-parallel topology. Conversely, sequences containing a short central loop tend to form a parallel topology of lower stability. In addition, over half of interrogated sequences were found in the genomes of diverse organisms, implicating their potential regulatory roles in the genome or as therapeutic targets. This study illustrates the structural roles of loops in G-quadruplex folding and should help to establish rules to predict the folding pattern and stability of G-quadruplexes.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10608 - Biochemistry and molecular biology
Result continuities
Project
<a href="/en/project/EF15_003%2F0000477" target="_blank" >EF15_003/0000477: Structural gymnastics of nucleic acids: from molecular principles through biological functions to therapeutic targets.</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nucleic Acids Research
ISSN
0305-1048
e-ISSN
—
Volume of the periodical
46
Issue of the periodical within the volume
18
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
9264-9275
UT code for WoS article
000450953200008
EID of the result in the Scopus database
—