Toll-Like Receptor 3 in Solid Cancer and Therapy Resistance
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F20%3A00536528" target="_blank" >RIV/68081707:_____/20:00536528 - isvavai.cz</a>
Alternative codes found
RIV/00159816:_____/20:00073509 RIV/00216224:14310/20:00117618 RIV/61989592:15110/20:73602662
Result on the web
<a href="http://apps.webofknowledge.com/InboundService.do?customersID=Alerting&mode=FullRecord&IsProductCode=Yes&product=WOS&Init=Yes&Func=Frame&DestFail=http%3A%2F%2Fwww.webofknowledge.com&action=retrieve&SrcApp=Alerting&SrcAuth=Alerting&SID=C1pXEQmefCtg1cvGeE2&UT=WOS%3A000593509300001" target="_blank" >http://apps.webofknowledge.com/InboundService.do?customersID=Alerting&mode=FullRecord&IsProductCode=Yes&product=WOS&Init=Yes&Func=Frame&DestFail=http%3A%2F%2Fwww.webofknowledge.com&action=retrieve&SrcApp=Alerting&SrcAuth=Alerting&SID=C1pXEQmefCtg1cvGeE2&UT=WOS%3A000593509300001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/cancers12113227" target="_blank" >10.3390/cancers12113227</a>
Alternative languages
Result language
angličtina
Original language name
Toll-Like Receptor 3 in Solid Cancer and Therapy Resistance
Original language description
Simple SummarynToll-like receptor 3 (TLR3) is a member of the TLR family, which has been extensively studied for the antiviral function and, therefore, its role in the innate and adaptive immune responses. It is highly expressed in the endosomes of antigen-presenting immune cells and epithelial cells. Several studies have demonstrated TLR3 expression in multiple neoplasia types including breast, prostate, and ovarian cancer. In this perspective, we focus on the mechanisms through which TLR3 can either lead to tumor regression or promote carcinogenesis as well as on the potential of TLR-based therapies in resistant cancer.nnToll-like receptor 3 (TLR3) is a member of the TLR family, which has been extensively studied for its antiviral function. It is highly expressed in the endosomes of antigen-presenting immune cells and epithelial cells. TLR3 binds specifically double-strand RNAs (dsRNAs), leading to the activation of mainly two downstream pathways: the phosphorylation of IRF3, with subsequent production of type I interferon, and the activation of NF-kappa B, which drives the production of inflammatory cytokines and chemokines. Several studies have demonstrated TLR3 expression in multiple neoplasia types including breast, prostate, and lung cancer. Most studies were focused on the beneficial role of TLR3 activation in tumor cells, which leads to the production of cytotoxic cytokines and interferons and promotes caspase-dependent apoptosis. Indeed, ligands of this receptor were proposed for the treatment of cancer, also in combination with conventional chemotherapy. In contrast to these findings, recent evidence showed a link between TLR3 and tumor progression, metastasis, and therapy resistance. In the present review, we summarize the current knowledge of the mechanisms through which TLR3 can either lead to tumor regression or promote carcinogenesis as well as the potential of TLR-based therapies in resistant cancer.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30204 - Oncology
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Cancers (Basel)
ISSN
2072-6694
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
11
Country of publishing house
CH - SWITZERLAND
Number of pages
13
Pages from-to
3227
UT code for WoS article
000593509300001
EID of the result in the Scopus database
2-s2.0-85096573131