G4 Structures in Control of Replication and Transcription of rRNA Genes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F20%3A00537472" target="_blank" >RIV/68081707:_____/20:00537472 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/20:00117308
Result on the web
<a href="http://apps.webofknowledge.com/InboundService.do?customersID=Alerting&mode=FullRecord&IsProductCode=Yes&product=WOS&Init=Yes&Func=Frame&DestFail=http%3A%2F%2Fwww.webofknowledge.com&action=retrieve&SrcApp=Alerting&SrcAuth=Alerting&SID=F5ecl7TTnxXPl2FJDDH&UT=WOS%3A000581767800001" target="_blank" >http://apps.webofknowledge.com/InboundService.do?customersID=Alerting&mode=FullRecord&IsProductCode=Yes&product=WOS&Init=Yes&Func=Frame&DestFail=http%3A%2F%2Fwww.webofknowledge.com&action=retrieve&SrcApp=Alerting&SrcAuth=Alerting&SID=F5ecl7TTnxXPl2FJDDH&UT=WOS%3A000581767800001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fpls.2020.593692" target="_blank" >10.3389/fpls.2020.593692</a>
Alternative languages
Result language
angličtina
Original language name
G4 Structures in Control of Replication and Transcription of rRNA Genes
Original language description
Genes encoding 45S ribosomal RNA (rDNA) are known for their abundance within eukaryotic genomes and for their unstable copy numbers in response to changes in various genetic and epigenetic factors. Commonly, we understand as epigenetic factors (affecting gene expression without a change in DNA sequence), namely DNA methylation, histone posttranslational modifications, histone variants, RNA interference, nucleosome remodeling and assembly, and chromosome position effect. All these were actually shown to affect activity and stability of rDNA. Here, we focus on another phenomenon the potential of DNA containing shortly spaced oligo-guanine tracts to form quadruplex structures (G4). Interestingly, sites with a high propensity to form G4 were described in yeast, animal, and plant rDNAs, in addition to G4 at telomeres, some gene promoters, and transposons, suggesting the evolutionary ancient origin of G4 as a regulatory module. Here, we present examples of rDNA promoter regions with extremely high potential to form G4 in two model plants, Arabidopsis thaliana and Physcomitrella patens. The high G4 potential is balanced by the activity of G4-resolving enzymes. The ability of rDNA to undergo these ´structural gymnastics´ thus represents another layer of the rich repertoire of epigenetic regulations, which is pronounced in rDNA due to its highly repetitive character.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10611 - Plant sciences, botany
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Frontiers in Plant Science
ISSN
1664-462X
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
2020
Country of publishing house
CH - SWITZERLAND
Number of pages
6
Pages from-to
593692
UT code for WoS article
000581767800001
EID of the result in the Scopus database
2-s2.0-85094095833