All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Parameter modified versions of preconditioning and iterative inner product free refinement methods for two-by-two block matrices

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F19%3A00509852" target="_blank" >RIV/68145535:_____/19:00509852 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0024379519303118" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0024379519303118</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.laa.2019.07.024" target="_blank" >10.1016/j.laa.2019.07.024</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Parameter modified versions of preconditioning and iterative inner product free refinement methods for two-by-two block matrices

  • Original language description

    A special two-by-two block matrix form arises in many important applications. Extending earlier results it is shown that parameter modified versions of a very efficient preconditioner does not improve its rate of convergence. This holds also for iterative refinement methods corresponding to a few fixed steps of the Chebyshev accelerated method. The parameter version can improve the defect-correction method but the convergence of this method is slower than an iterative refinement method with an optimal parameter. The paper includes also a discussion of how one can save computer elapsed times by avoiding use of global inner products such as by use of a Chebyshev accelerated method instead of a Krylov subspace method. Since accurate and even sharp eigenvalue bounds are available, the Chebyshev iteration method converges as fast as the Krylov subspace method.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Linear Algebra and Its Applications

  • ISSN

    0024-3795

  • e-ISSN

  • Volume of the periodical

    582

  • Issue of the periodical within the volume

    December 2019

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    27

  • Pages from-to

    403-429

  • UT code for WoS article

    000489000000020

  • EID of the result in the Scopus database

    2-s2.0-85070910739