WHOLE-GENOME EXPRESSION ANALYSIS IN THP-1 MACROPHAGE-LIKE CELLS EXPOSED TO DIVERSE NANOMATERIALS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378041%3A_____%2F18%3A00507359" target="_blank" >RIV/68378041:_____/18:00507359 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/18:00326830 RIV/68378050:_____/18:00507359 RIV/61989100:27200/18:10242337
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
WHOLE-GENOME EXPRESSION ANALYSIS IN THP-1 MACROPHAGE-LIKE CELLS EXPOSED TO DIVERSE NANOMATERIALS
Original language description
From the perspective of the immune system, nanomaterials (NMs) represent invading agents. Macrophages are immune cells residing in all organs and tissues as the first line of defense. Interactions of macrophages with NMs can determine the fate of NMs as well as their potential toxic effects. In the present study, we compared toxicity of four different types of NMs [NM-100 (TiO2, 110 nm), NM-110 (ZnO, 20 nm), NM-200 (SiO2, 150 nm) and NM-300K (Ag, 20 nm)], towards THP-1 macrophage-like cells. Cells were incubated with non-cytotoxic concentrations (1-25 mu g/ml) of NMs for 24 hours and microarray technology was used to analyze changes in whole-genome expression. Gene expression profiling revealed a substantially different molecular response following exposure to diverse NMs. While NM-100 did not exert any significant effect on gene expression profile, all other NMs triggered a pro-inflammatory response characterized by an activation of the NF-kappa B transcription factor and induced expression of numerous chemokines and cytokines. NM-110 and NM-300K further modulated processes such as DNA damage response, oxidative and replication stress as well as cell cycle progression and proteasome function. We suppose that genotoxicity of ZnO and Ag NMs leading to DNA damage and alternatively to apoptosis in THP-1 macrophages is probably caused by the extensive intracellular dissolution of these NPs, as confirmed by TEM imaging.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
30108 - Toxicology
Result continuities
Project
<a href="/en/project/LM2015073" target="_blank" >LM2015073: Nanomaterials and Nanotechnologies for Environment Protection and Sustainable Future</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Nanocon 2017 : conference proceedings : 9th International Conference on Nanomaterials - Research & Application
ISBN
9788087294819
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
679-684
Publisher name
Tanger Ltd.
Place of publication
Ostrava
Event location
Brno
Event date
Oct 18, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000452823300112