All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Whole-genome Expression Analysis in THP-1 Macrophage-like Cells Exposed to Diverse Nanomaterials

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00326830" target="_blank" >RIV/68407700:21230/18:00326830 - isvavai.cz</a>

  • Alternative codes found

    RIV/68378041:_____/18:00507359 RIV/68378050:_____/18:00507359 RIV/61989100:27200/18:10242337

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Whole-genome Expression Analysis in THP-1 Macrophage-like Cells Exposed to Diverse Nanomaterials

  • Original language description

    From the perspective of the immune system, nanomaterials (NMs) represent invading agents. Macrophages are immune cells residing in all organs and tissues as the first line of defense. Interactions of macrophages with NMs can determine the fate of NMs as well as their potential toxic effects. In the present study, we compared toxicity of four different types of NMs [NM-100 (TiO2, 110 nm), NM-110 (ZnO, 20 nm), NM-200 (SiO2, 150 nm) and NM-300K (Ag, 20 nm)], towards THP-1 macrophage-like cells. Cells were incubated with non-cytotoxic concentrations (1-25 µg/ml) of NMs for 24 hours and microarray technology was used to analyze changes in whole-genome expression. Gene expression profiling revealed a substantially different molecular response following exposure to diverse NMs. While NM-100 did not exert any significant effect on gene expression profile, all other NMs triggered a pro-inflammatory response characterized by an activation of the NF-κB transcription factor and induced expression of numerous chemokines and cytokines. NM-110 and NM-300K further modulated processes such as DNA damage response, oxidative and replication stress as well as cell cycle progression and proteasome function. We suppose that genotoxicity of ZnO and Ag NMs leading to DNA damage and alternatively to apoptosis in THP-1 macrophages is probably caused by the extensive intracellular dissolution of these NPs, as confirmed by TEM imaging.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    NANOCON 2017 Conference Proceedings

  • ISBN

    978-80-87294-81-9

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    679-684

  • Publisher name

    Tanger Ltd.

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    Oct 18, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000452823300112