All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

GIT1/beta PIX signaling proteins and PAK1 kinase regulate microtubule nucleation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378050%3A_____%2F16%3A00473124" target="_blank" >RIV/68378050:_____/16:00473124 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.bbamcr.2016.03.016" target="_blank" >http://dx.doi.org/10.1016/j.bbamcr.2016.03.016</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.bbamcr.2016.03.016" target="_blank" >10.1016/j.bbamcr.2016.03.016</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    GIT1/beta PIX signaling proteins and PAK1 kinase regulate microtubule nucleation

  • Original language description

    Microtubule nucleation from gamma-tubulin complexes, located at the centrosome, is an essential step in the formation of the microtubule cytoskeleton. However, the signaling mechanisms that regulate microtubule nucleation in interphase cells are largely unknown. In this study, we report that gamma-tubulin is in complexes containing G protein-coupled receptor kinase-interacting protein 1 (GIT1), p21-activated kinase interacting exchange factor (pin and p21 protein (Cdc42/Rac)-activated kinase 1 (PAK1) in various cell lines. Immunofluorescence microscopy revealed association of GIT1, beta PIX and activated PAK1 with centrosomes. Microtubule regrowth experiments showed that depletion of beta PIX stimulated microtubule nucleation, while depletion of GIT1 or PAK1 resulted in decreased nucleation in the interphase cells. These data were confirmed for GIT1 and beta PIX by phenotypic rescue experiments, and counting of new microtubules emanating from centrosomes during the microtubule regrowth. The importance of PAK1 for microtubule nucleation was corroborated by the inhibition of its kinase activity with IPA-3 inhibitor. GIT1 with PAK1 thus represent positive regulators, and beta PIX is a negative regulator of microtubule nucleation from the interphase centrosomes. The regulatory roles of GIT1, beta PIX and PAK1 in microtubule nucleation correlated with recruitment of gamma-tubulin to the centrosome. Furthermore, in vitro kinase assays showed that GIT1 and beta PIX, but not gamma-tubulin, serve as substrates for PAK1. Finally, direct interaction of gamma-tubulin with the C-terminal domain of beta PIX and the N-terminal domain of GIT1, which targets this protein to the centrosome, was determined by pull-down experiments. We propose that GIT1/beta PIX signaling proteins with PAK1 lcinase represent a novel regulatory mechanism of microtubule nucleation in interphase cells. (C) 2016 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    EB - Genetics and molecular biology

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Biochimica Et Biophysica Acta-Molecular Cell Research

  • ISSN

    0167-4889

  • e-ISSN

  • Volume of the periodical

    1863

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    16

  • Pages from-to

    1282-1297

  • UT code for WoS article

    000375885800019

  • EID of the result in the Scopus database