Measurement of total energy flux density at a substrate during TiOx thin film deposition by using a plasma jet system
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F09%3A00334316" target="_blank" >RIV/68378271:_____/09:00334316 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Measurement of total energy flux density at a substrate during TiOx thin film deposition by using a plasma jet system
Original language description
The total energy flux density delivered to an electrically isolated substrate in a low-pressure pulsed DC hollow cathode plasma jet sputtering system during TiO2 thin film deposition has been quantified. The plasma source was operated in constant averagecurrent mode and in a mixture of argon and oxygen or only in pure argon working gas. A titanium nozzle served as the hollow cathode. The total energy flux density measurements were made using a planar calorimeter probe. The main results from the calorimeter probe showed clearly that the total energy flux density at the electrically isolated substrate decreases significantly with duty cycle from 100% (DC mode) to 10% at a given pulsing frequency 2.5 kHz.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BL - Plasma physics and discharge through gases
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Vacuum
ISSN
0042-207X
e-ISSN
—
Volume of the periodical
83
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
7
Pages from-to
—
UT code for WoS article
000261824400008
EID of the result in the Scopus database
—