All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Maximal operator on variable Lebesgue spaces for almost monotone radial exponent

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F08%3A01142252" target="_blank" >RIV/68407700:21110/08:01142252 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Maximal operator on variable Lebesgue spaces for almost monotone radial exponent

  • Original language description

    Consider general Lebesgue spaces with variable exponent $p$. There are known classes $\\mathcal{L}$ and $\\mathcal{N}$ of functions $p$ such that the Hardy-Littlewood maximal operator is bounded on these spaces provided $p\\in\\mathcal{L}\\cap\\mathcal{P}$. The class $\\mathcal{L}$ controls a local properties of $p$ and $\\mathcal{N}$ gives a behavior of $p$ at infinity. We lay in this paper emphasis to properties of $p$ at infinity. We extend the class $\\mathcal{N}$ to a collection $\\mathcal{D}$ of functions $p$ such that the Hardy-Littlewood maximal operator is bounded on the variable Lebesgue spaces provided $p\\in\\mathcal{L}\\cap\\mathcal{D}$ and the class $\\mathcal{D}$ is essentially greater than $\\mathcal{N}$.Moreover, it is practically very easy to verify the condition $p\\in\\mathcal{D}$.

  • Czech name

    Maximální operátor na Lebesgueových prostorech pro skoro radiální monotónní exponent

  • Czech description

    Consider general Lebesgue spaces with variable exponent $p$. There are known classes $\\mathcal{L}$ and $\\mathcal{N}$ of functions $p$ such that the Hardy-Littlewood maximal operator is bounded on these spaces provided $p\\in\\mathcal{L}\\cap\\mathcal{P}$. The class $\\mathcal{L}$ controls a local properties of $p$ and $\\mathcal{N}$ gives a behavior of $p$ at infinity. We lay in this paper emphasis to properties of $p$ at infinity. We extend the class $\\mathcal{N}$ to a collection $\\mathcal{D}$ of functions $p$ such that the Hardy-Littlewood maximal operator is bounded on the variable Lebesgue spaces provided $p\\in\\mathcal{L}\\cap\\mathcal{D}$ and the class $\\mathcal{D}$ is essentially greater than $\\mathcal{N}$.Moreover, it is practically very easy to verify the condition $p\\in\\mathcal{D}$.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Analysis and Its Applications

  • ISSN

    0022-247X

  • e-ISSN

  • Volume of the periodical

    338

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    20

  • Pages from-to

  • UT code for WoS article

    000253172000053

  • EID of the result in the Scopus database