Maximal operator on variable Lebesgue spaces for almost monotone radial exponent
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F08%3A01142252" target="_blank" >RIV/68407700:21110/08:01142252 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Maximal operator on variable Lebesgue spaces for almost monotone radial exponent
Original language description
Consider general Lebesgue spaces with variable exponent $p$. There are known classes $\\mathcal{L}$ and $\\mathcal{N}$ of functions $p$ such that the Hardy-Littlewood maximal operator is bounded on these spaces provided $p\\in\\mathcal{L}\\cap\\mathcal{P}$. The class $\\mathcal{L}$ controls a local properties of $p$ and $\\mathcal{N}$ gives a behavior of $p$ at infinity. We lay in this paper emphasis to properties of $p$ at infinity. We extend the class $\\mathcal{N}$ to a collection $\\mathcal{D}$ of functions $p$ such that the Hardy-Littlewood maximal operator is bounded on the variable Lebesgue spaces provided $p\\in\\mathcal{L}\\cap\\mathcal{D}$ and the class $\\mathcal{D}$ is essentially greater than $\\mathcal{N}$.Moreover, it is practically very easy to verify the condition $p\\in\\mathcal{D}$.
Czech name
Maximální operátor na Lebesgueových prostorech pro skoro radiální monotónní exponent
Czech description
Consider general Lebesgue spaces with variable exponent $p$. There are known classes $\\mathcal{L}$ and $\\mathcal{N}$ of functions $p$ such that the Hardy-Littlewood maximal operator is bounded on these spaces provided $p\\in\\mathcal{L}\\cap\\mathcal{P}$. The class $\\mathcal{L}$ controls a local properties of $p$ and $\\mathcal{N}$ gives a behavior of $p$ at infinity. We lay in this paper emphasis to properties of $p$ at infinity. We extend the class $\\mathcal{N}$ to a collection $\\mathcal{D}$ of functions $p$ such that the Hardy-Littlewood maximal operator is bounded on the variable Lebesgue spaces provided $p\\in\\mathcal{L}\\cap\\mathcal{D}$ and the class $\\mathcal{D}$ is essentially greater than $\\mathcal{N}$.Moreover, it is practically very easy to verify the condition $p\\in\\mathcal{D}$.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Its Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
338
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
—
UT code for WoS article
000253172000053
EID of the result in the Scopus database
—