All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A note on one-sided maximal operator in $L^{p(.)}(mathbb{R})$

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F10%3A00178871" target="_blank" >RIV/68407700:21110/10:00178871 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    A note on one-sided maximal operator in $L^{p(.)}(mathbb{R})$

  • Original language description

    Consider one-sided Hardy-Littlewood maximal operator on the general Lebesgue space with variable exponent. It is known a local sufficient condition to the function $p(.)$ for the boundedness of the one-sided maximal operator on $L^{p(.)}(\mathbb{R})$ provided $p(.)$ is a constant function in a neighborhood of infinity. Our main aim is to find a weaker condition to $p(.)$ at infinity to guarantee the boundedness of the one-sided maximal operator on $L^{p(.)}(\mathbb{R})$. We will show two different sufficient conditions to the behavior of $p(.)$ at infinity under which the one-sided maximal operator is bounded on $L^{p(.)}(\mathbb{R})$.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F08%2F0383" target="_blank" >GA201/08/0383: Function Spaces, Weighted Inequalities and Interpolation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Inequalities and Applications

  • ISSN

    1331-4343

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    HR - CROATIA

  • Number of pages

    11

  • Pages from-to

  • UT code for WoS article

    000288559700016

  • EID of the result in the Scopus database