All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Maximal operator on variable Lebesgue spaces with radial exponent

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F19%3A00337976" target="_blank" >RIV/68407700:21110/19:00337976 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jmaa.2019.04.056" target="_blank" >https://doi.org/10.1016/j.jmaa.2019.04.056</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2019.04.056" target="_blank" >10.1016/j.jmaa.2019.04.056</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Maximal operator on variable Lebesgue spaces with radial exponent

  • Original language description

    Consider general Lebesgue spaces with variable exponent $p(.)$ and the Hardy-Littlewood maximal operator $M$. There are known sufficient conditions for $p(.)$ which guarantee the boundedness of $M$ on these spaces. These conditions are divided into two categories. The first one controls a local behavior of $p(.)$ and the second one gives sufficient conditions to $p(.)$ at infinity. We put in this paper emphasis to properties of $p(.)$ at infinity. Certain sufficient conditions to $p(.)$ at infinity are known to guarantee the boundedness of the maximal operator on variable Lebesgue spaces. In this paper we find a weaker condition to $p(.)$ which still preserves the boundedness of $M$. Moreover, it is known that there exist some functions $p(.)$ which have no limit at infinity for which the maximal operator is bounded. We give here a wider class of such functions $p(.)$ with no limit which nevertheless preserves the boundedness of $M$.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-00580S" target="_blank" >GA18-00580S: Function Spaces and Approximation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Analysis and Its Applications

  • ISSN

    0022-247X

  • e-ISSN

    1096-0813

  • Volume of the periodical

    477

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    26

  • Pages from-to

    961-986

  • UT code for WoS article

    000470802500004

  • EID of the result in the Scopus database

    2-s2.0-85065825259