The time-periodic solutions of the Navier-Stokes equations with mixed boundary conditions.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F10%3A00178197" target="_blank" >RIV/68407700:21110/10:00178197 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The time-periodic solutions of the Navier-Stokes equations with mixed boundary conditions.
Original language description
In this paper we deal with the system of periodic Navier-Stokes equations with mixed boundary conditions. We define Banach spaces $X_P$XP and $Y_P$YP, respectively, the space of `possible' solutions of this problem and the space of its data. We define the operator $scr N_Pcolon, X_Pto Y_P$NP:XP->YP and formulate our problem in terms of operator equations. Let $boldkey uin X_P$u in XP and $scr G_{Pboldkey u}colon, X_Pto Y_P$GPu:XP->YP be the Fréchet derivative of $scr N_P$NP at $boldkey u$u.Denote by $scr M_R$MR the set of all functions $boldkey u$u such that $scr G_{Pboldkey u}$GPu is one-to-one and onto $Y_P$YP. We prove that $scr M_R$MR is weakly dense and weakly open.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190905" target="_blank" >IAA100190905: Dynamical properties of the Navier-Stokes and related equations</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete and Continuous Dynamical Systems. Series S
ISSN
1937-1632
e-ISSN
—
Volume of the periodical
3
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—