Universal measure zero, large Hausdorff dimension, and nearly Lipschitz maps.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F12%3A00203412" target="_blank" >RIV/68407700:21110/12:00203412 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4064/fm218-2-1" target="_blank" >http://dx.doi.org/10.4064/fm218-2-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4064/fm218-2-1" target="_blank" >10.4064/fm218-2-1</a>
Alternative languages
Result language
angličtina
Original language name
Universal measure zero, large Hausdorff dimension, and nearly Lipschitz maps.
Original language description
We prove that each analytic set contains a universally null set of the same Hausdorff dimension and that each metric space contains a universally null set of Hausdorff dimension no less than the topological dimension of the space. Similar results also hold for universally meager sets. An essential part of the construction involves an analysis of Lipschitz-like mappings of separable metric spaces onto Cantor cubes and self-similar sets.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fundamenta Mathematicae
ISSN
0016-2736
e-ISSN
—
Volume of the periodical
218
Issue of the periodical within the volume
2
Country of publishing house
PL - POLAND
Number of pages
25
Pages from-to
95-119
UT code for WoS article
000310111200001
EID of the result in the Scopus database
—