All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Estimates of s-numbers of a Sobolev embedding involving spaces of variable exponent

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F15%3A00242123" target="_blank" >RIV/68407700:21110/15:00242123 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jmaa.2015.05.043" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2015.05.043</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2015.05.043" target="_blank" >10.1016/j.jmaa.2015.05.043</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Estimates of s-numbers of a Sobolev embedding involving spaces of variable exponent

  • Original language description

    Let Omega be a bounded open subset of R-d, suppose that p(center dot) : Omega -> (1, infinity) is a bounded, log-Holder continuous function, and let L-p(center dot) (Omega), W-p(center dot)(o1)(Omega) be the usual variable exponent Lebesgue space and thecorresponding Sobolev space. The natural embedding id : W-p(center dot)(o1)(Omega) -> L-p(center dot)(Omega) is compact; when Omega is a bounded domain it is shown that there are positive constants K-1, K-2 such that for all n is an element of N, K-1 <=n(1/d)s(n)(id) <= K-2, where s(n)(id) is the nth approximation, Bernstein, Gelfand or Kolmogorov number of id. When p is constant this result is familiar; for variable p and d > 1 it appears to be the first result available for s-numbers of Sobolev exnbeddings. The paper also contains a sharp estimate of the norm of embeddings between L-p(center dot)(Omega) spaces which is interesting in its own right. K-1 <= n(1/d)s(n)(id) <= K-2, where s(n)(id) is the nth approximation, Bernstein, Gel

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-14743S" target="_blank" >GA13-14743S: Function spaces, weighted inequalities and interpolation II</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Analysis and Applications

  • ISSN

    0022-247X

  • e-ISSN

  • Volume of the periodical

    430

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    1088-1101

  • UT code for WoS article

    000356126300030

  • EID of the result in the Scopus database