Characterisation of zero trace functions in variable exponent Sobolev spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F17%3A00321825" target="_blank" >RIV/68407700:21110/17:00321825 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/mana.201600102" target="_blank" >http://dx.doi.org/10.1002/mana.201600102</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.201600102" target="_blank" >10.1002/mana.201600102</a>
Alternative languages
Result language
angličtina
Original language name
Characterisation of zero trace functions in variable exponent Sobolev spaces
Original language description
It is well known that if u belongs to the Sobolev space W1,p(), where is an open subset of RN and p(1,), then W01,p if u/d belongs to weak Lp(), where d(x)= dist Results of this type are given here for Sobolev spaces with a variable exponent p, under the conditions that is bounded and satisfies a mild regularity condition, and p is a bounded, log-Holder continuous function that is bounded away from 1. The outcome includes theorems that are new even when p is constant. In particular it is shown that if and only if uW1,p() and u/dL is an element of L-1(Omega).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA13-14743S" target="_blank" >GA13-14743S: Function spaces, weighted inequalities and interpolation II</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MATHEMATISCHE NACHRICHTEN
ISSN
0025-584X
e-ISSN
1522-2616
Volume of the periodical
290
Issue of the periodical within the volume
14-15
Country of publishing house
DE - GERMANY
Number of pages
12
Pages from-to
2247-2258
UT code for WoS article
000412179500011
EID of the result in the Scopus database
—