Strong measure zero and meager-additive sets through the prism of fractal
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F19%3A00339118" target="_blank" >RIV/68407700:21110/19:00339118 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.14712/1213-7243.2015.277" target="_blank" >https://doi.org/10.14712/1213-7243.2015.277</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14712/1213-7243.2015.277" target="_blank" >10.14712/1213-7243.2015.277</a>
Alternative languages
Result language
angličtina
Original language name
Strong measure zero and meager-additive sets through the prism of fractal
Original language description
We develop a theory of sharp measure zero sets that parallels Borel's strong measure zero, and prove a theorem analogous to Galvin-Mycielski-Solovay theorem, namely that a set of reals has sharp measure zero if and only if it is meager-additive. Some consequences: A subset of 2(omega) is meager-additive if and only if it is epsilon-additive; if f : 2(omega) -> 2(omega) is continuous and X is meager-additive, then so is f(X).
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Commentationes Mathematicae Universitatis Carolinae
ISSN
0010-2628
e-ISSN
1213-7243
Volume of the periodical
60
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
25
Pages from-to
131-155
UT code for WoS article
000464761700007
EID of the result in the Scopus database
2-s2.0-85064707210