All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Surface changes induced by plasma treatment and high temperature annealing of silicon dioxide microparticles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F24%3A00375057" target="_blank" >RIV/68407700:21110/24:00375057 - isvavai.cz</a>

  • Alternative codes found

    RIV/68378271:_____/24:00587391

  • Result on the web

    <a href="https://doi.org/10.37904/nanocon.2023.4781" target="_blank" >https://doi.org/10.37904/nanocon.2023.4781</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.37904/nanocon.2023.4781" target="_blank" >10.37904/nanocon.2023.4781</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Surface changes induced by plasma treatment and high temperature annealing of silicon dioxide microparticles

  • Original language description

    Due to the high surface to volume ratio, the particles’ surface properties modification defines its properties in general, which is crucial for their use. From this point of view, plasma processing or high temperature annealing can be considered as the universal techniques for efficient modification of materials in the form of powder. In this study, the silicon dioxide microparticles have been treated in a hydrogen, oxygen or vacuum by low temperature plasma or annealing. The change of SiO2 microparticles properties was investigated by photoluminescence spectroscopy at room and low temperature. High temperature annealing in hydrogen induced under UV excitation photoluminescence in the near UV and visible light indicating the change of defect states on the surface of the microparticles. We believe that observed findings clearly demonstrate useful method for analysis of SiO2 microparticles surface modification attractive also for fundamental research.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    NANOCON 2023 Conference Proceedings

  • ISBN

    978-80-88365-15-0

  • ISSN

    2694-930X

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    196-202

  • Publisher name

    TANGER

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    Oct 18, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001234125400032