All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Study of Learning Entropy for Novelty Detection in lung tumor motion prediction for target tracking radiation therapy

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F14%3A00224858" target="_blank" >RIV/68407700:21220/14:00224858 - isvavai.cz</a>

  • Result on the web

    <a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6889834" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6889834</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IJCNN.2014.6889834" target="_blank" >10.1109/IJCNN.2014.6889834</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Study of Learning Entropy for Novelty Detection in lung tumor motion prediction for target tracking radiation therapy

  • Original language description

    This paper presents recently introduced concept of Learning Entropy (LE) for time series and recalls the practical form of its evaluation in real time. Then, a technique that estimates the increased risk of prediction inaccuracy of adaptive predictors inreal time using LE is introduced. On simulation examples using artificial signal and real respiratory time series, it is shown that LE can be used to evaluate the actual validity of the adaptive predicting model of time series in real time. The introduced technique is discussed as a potential approach to the improvement of accuracy of lung tumor tracking radiation therapy.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BC - Theory and management systems

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Neural Networks (IJCNN), 2014 International Joint Conference on - Scopus ISBN

  • ISBN

    978-1-4799-1484-5

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    3124-3129

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Beijing

  • Event date

    Jul 6, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article