Mining Plausible Patterns from Genomic Data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F06%3A00119833" target="_blank" >RIV/68407700:21230/06:00119833 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Mining Plausible Patterns from Genomic Data
Original language description
The discovery of biologically interpretable knowledge from gene expression data is one of the largest contemporary genomic challenges. As large volumes of expression data are being generated, there is a great need for automated tools that provide the means to analyze them. However, the same tools can provide an overwhelming number of candidate hypotheses which can hardly be manually exploited by an expert. An additional knowledge helping to focus automatically on the most plausible candidates only can up-value the experiment significantly. Background knowledge available in literature databases, biological ontologies and other sources can be used for this purpose. In this paper we propose and verify a methodology that enables to effectively mine and represent meaningful over-expression patterns. Each pattern represents a bi-set of a gene group over-expressed in a set of biological situations.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1ET101210513" target="_blank" >1ET101210513: Relational machine learning for analysis of biomedical data</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of Nineteenth IEEE International Symposium on Computer-Based Medical Systems
ISBN
978-0-7695-2517-4
ISSN
1063-7125
e-ISSN
—
Number of pages
6
Pages from-to
183-188
Publisher name
IEEE Computer Society Press
Place of publication
Los Alamitos
Event location
Utah
Event date
Jun 22, 2006
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—