Equational Properties of Iterative Monads
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F10%3A00171631" target="_blank" >RIV/68407700:21230/10:00171631 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Equational Properties of Iterative Monads
Original language description
Iterative monads of Calvin Elgot were introduced to treat the semantics of recursive equations purely algebraically. They are Lawvere theories with the property that all ideal systems of recursive equations have unique solutions. We prove that the uniquesolutions in iterative monads satisfy all the equational properties of iteration monads of Stephen Bloom and Zoltán Ésik, whenever the base category is hyper-extensive and locally finitely presentable. This result is a step towards proving that functorial iteration monads form a monadic category over sets in context. This shows that functoriality is an equational property when considered w.r.t. sets in context.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Information and Computation
ISSN
0890-5401
e-ISSN
—
Volume of the periodical
208
Issue of the periodical within the volume
12
Country of publishing house
US - UNITED STATES
Number of pages
43
Pages from-to
—
UT code for WoS article
000285077900002
EID of the result in the Scopus database
—