Elgot theories: A new perspective on the equational properties of iteration
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00179252" target="_blank" >RIV/68407700:21230/11:00179252 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1017/S0960129510000496" target="_blank" >http://dx.doi.org/10.1017/S0960129510000496</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0960129510000496" target="_blank" >10.1017/S0960129510000496</a>
Alternative languages
Result language
angličtina
Original language name
Elgot theories: A new perspective on the equational properties of iteration
Original language description
Bloom and Ésik's concept of iteration theory summarises all equational properties that iteration has in common applications, for example, in domain theory, where to every system of recursive equations, the least solution is assigned. This paper shows that in the coalgebraic approach to iteration, the more appropriate concept is that of a functorial iteration theory (called Elgot theory). These theories have a particularly simple axiomatisation, and all well-known examples of iteration theories are functorial. Elgot theories are proved to be monadic over the category of sets in context (or, more generally, the category of finitary endofunctors of a locally finitely presentable category). This demonstrates that functoriality is an equational property from the perspective of sets in context. In contrast, Bloom and Ésik worked in the base category of signatures rather than sets in context, and there iteration theories are monadic
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Structures in Computer Science
ISSN
0960-1295
e-ISSN
—
Volume of the periodical
2011
Issue of the periodical within the volume
21
Country of publishing house
GB - UNITED KINGDOM
Number of pages
64
Pages from-to
417-480
UT code for WoS article
000289006300008
EID of the result in the Scopus database
—