Distributed stabilization of spatially invariant systems: positive polynomial approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F10%3A00171897" target="_blank" >RIV/68407700:21230/10:00171897 - isvavai.cz</a>
Alternative codes found
RIV/67985556:_____/10:00347862
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Distributed stabilization of spatially invariant systems: positive polynomial approach
Original language description
The paper gives a computationally feasible characterisation of spatially distributed discrete-time controllers stabilising a spatially invariant system. This gives a building block for convex optimisation based control design for these systems. Mathematically, such systems are described by partial differential equations with coefficients independent on time and location. In this paper, a situation with one spatial and one temporal variable is considered. Models of such systems can take a form of a 2-D transfer function. Stabilising distributed feedback controllers are then parametrised as a solution to the Diophantine equation ax + by = c for a given stable bivariate polynomial c. This paper brings a computational characterisation of all such stable 2-D polynomials exploiting the relationship between a stability of a 2-D polynomial and positiveness of a related polynomial matrix on the unit circle. Such matrices are usually bilinear in the coefficients of the original polynomials.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0567" target="_blank" >1M0567: Centre for Applied Cybernetics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems - MTNS 2010
ISBN
978-963-311-370-7
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
—
Publisher name
MTA SZTAKI - Hungarian Academy of Sciences
Place of publication
Budapest
Event location
Budapešť
Event date
Jul 5, 2010
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—