Distributed stabilisation of spatially invariant systems: positive polynomial approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F13%3A00203896" target="_blank" >RIV/68407700:21230/13:00203896 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11045-011-0152-5" target="_blank" >http://dx.doi.org/10.1007/s11045-011-0152-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11045-011-0152-5" target="_blank" >10.1007/s11045-011-0152-5</a>
Alternative languages
Result language
angličtina
Original language name
Distributed stabilisation of spatially invariant systems: positive polynomial approach
Original language description
The paper gives a computationally feasible characterisation of spatially distributed controllers stabilising a linear spatially invariant system, that is, a system described by linear partial differential equations with coefficients independent on time and location. With one spatial and one temporal variable such a system can be modelled by a 2-D transfer function. Stabilising distributed feedback controllers are then parametrised as a solution to the Diophantine equation ax + by = c for a given stablebi-variate polynomial c. The paper is built on the relationship between stability of a 2-D polynomial and positiveness of a related polynomial matrix on the unit circle. Such matrices are usually bilinear in the coefficients of the original polynomials.For low-order discrete-time systems it is shown that a linearising factorisation of the polynomial Schur-Cohn matrix exists. For higher order plants and/or controllers such factorisation is not possible as the solution set is non-convex a
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0567" target="_blank" >1M0567: Centre for Applied Cybernetics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Multidimensional Systems and Signal Processing
ISSN
0923-6082
e-ISSN
—
Volume of the periodical
24
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
19
Pages from-to
3-21
UT code for WoS article
000312715000002
EID of the result in the Scopus database
—