Semidefinite Representation of Convex Hulls of Rational Varieties
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00181653" target="_blank" >RIV/68407700:21230/11:00181653 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10440-011-9623-9" target="_blank" >http://dx.doi.org/10.1007/s10440-011-9623-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10440-011-9623-9" target="_blank" >10.1007/s10440-011-9623-9</a>
Alternative languages
Result language
angličtina
Original language name
Semidefinite Representation of Convex Hulls of Rational Varieties
Original language description
Using elementary duality properties of positive semidefinite moment matrices and polynomial sum-of-squares decompositions, we prove that the convex hull of rationally parameterized algebraic varieties is semidefinite representable (that is, it can be represented as a projection of an affine section of the cone of positive semidefinite matrices) in the case of (a) curves; (b) hypersurfaces parameterized by quadratics; and (c) hypersurfaces parameterized by bivariate quartics; all in an ambient space of arbitrary dimension.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP103%2F10%2F0628" target="_blank" >GAP103/10/0628: Semidefinite programming for nonlinear dynamical systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Applicandae Mathematicae
ISSN
0167-8019
e-ISSN
—
Volume of the periodical
115
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
319-327
UT code for WoS article
000293285400005
EID of the result in the Scopus database
—