All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Unsupervised (parameter) learning for MRFs on bipartite graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F13%3A00212637" target="_blank" >RIV/68407700:21230/13:00212637 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.5244/C.27.72" target="_blank" >http://dx.doi.org/10.5244/C.27.72</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5244/C.27.72" target="_blank" >10.5244/C.27.72</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Unsupervised (parameter) learning for MRFs on bipartite graphs

  • Original language description

    We consider unsupervised (parameter) learning for general Markov random fields on bipartite graphs. This model class includes Restricted Boltzmann Machines. We show that besides the widely used stochastic gradient approximation (a.k.a. Persistent Con- trastive Divergence) there is an alternative learning approach - a modified EM algorithm which is tractable because of the bipartiteness of the model graph. We compare the re- sulting double loop algorithm and the PCD learning experimentally and show thatthe former converges faster and more stable than the latter.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP202%2F12%2F2071" target="_blank" >GAP202/12/2071: Structured Statistical Models for Image Understanding</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    BMVC2013: Proceedings of the British Machine Vision Conference

  • ISBN

    1-901725-49-9

  • ISSN

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    "72.1"-"72.11"

  • Publisher name

    British Machine Vision Association

  • Place of publication

    London

  • Event location

    Bristol

  • Event date

    Sep 9, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000346352700069