Global Robot Localization Under Noise Stress Utilizing EA Methods and Semisemantic Classification of a Known Environment
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00222506" target="_blank" >RIV/68407700:21230/14:00222506 - isvavai.cz</a>
Result on the web
<a href="http://www.tandfonline.com/doi/full/10.1080/08839514.2014.875684" target="_blank" >http://www.tandfonline.com/doi/full/10.1080/08839514.2014.875684</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/08839514.2014.875684" target="_blank" >10.1080/08839514.2014.875684</a>
Alternative languages
Result language
angličtina
Original language name
Global Robot Localization Under Noise Stress Utilizing EA Methods and Semisemantic Classification of a Known Environment
Original language description
Global localization algorithms belong to the key research areas in the field of autonomous mobile robotics. The ability to correctly estimate the initial position after activation or to recover the global position if orientation is lost is required fromall modern autonomous systems. This article presents an algorithm for unmanned global navigation in a known environment containing noise and moving objects. Evolutionary algorithms (EA) form an important part of the discussed method. We also present a novel method of semisemantic classification of the environment in which a robot moves. This semisemantic description of the environment allows for a significantly better setup of the working parameters of individual EAs. It also enables to better connect EAs with the basic navigation methodology based on algebraic criteria, in other words, on the minimization of L1-norm. An extensive set of experimental results confirms that the connection of the semantic environment description and the na
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Artificial Intelligence
ISSN
0883-9514
e-ISSN
—
Volume of the periodical
28
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
58
Pages from-to
360-417
UT code for WoS article
000333952500003
EID of the result in the Scopus database
—