All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Global Robot Localization Under Noise Stress Utilizing EA Methods and Semisemantic Classification of a Known Environment

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00222506" target="_blank" >RIV/68407700:21230/14:00222506 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.tandfonline.com/doi/full/10.1080/08839514.2014.875684" target="_blank" >http://www.tandfonline.com/doi/full/10.1080/08839514.2014.875684</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/08839514.2014.875684" target="_blank" >10.1080/08839514.2014.875684</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Global Robot Localization Under Noise Stress Utilizing EA Methods and Semisemantic Classification of a Known Environment

  • Original language description

    Global localization algorithms belong to the key research areas in the field of autonomous mobile robotics. The ability to correctly estimate the initial position after activation or to recover the global position if orientation is lost is required fromall modern autonomous systems. This article presents an algorithm for unmanned global navigation in a known environment containing noise and moving objects. Evolutionary algorithms (EA) form an important part of the discussed method. We also present a novel method of semisemantic classification of the environment in which a robot moves. This semisemantic description of the environment allows for a significantly better setup of the working parameters of individual EAs. It also enables to better connect EAs with the basic navigation methodology based on algebraic criteria, in other words, on the minimization of L1-norm. An extensive set of experimental results confirms that the connection of the semantic environment description and the na

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    JC - Computer hardware and software

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Artificial Intelligence

  • ISSN

    0883-9514

  • e-ISSN

  • Volume of the periodical

    28

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    58

  • Pages from-to

    360-417

  • UT code for WoS article

    000333952500003

  • EID of the result in the Scopus database