All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Symbolic Regression by Grammar-based Multi-Gene Genetic Programming

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00231783" target="_blank" >RIV/68407700:21230/15:00231783 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21730/15:00231783

  • Result on the web

    <a href="http://dl.acm.org/citation.cfm?id=2768484&CFID=715756301&CFTOKEN=65340477" target="_blank" >http://dl.acm.org/citation.cfm?id=2768484&CFID=715756301&CFTOKEN=65340477</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/2739482.2768484" target="_blank" >10.1145/2739482.2768484</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Symbolic Regression by Grammar-based Multi-Gene Genetic Programming

  • Original language description

    Grammatical Evolution is an algorithm of Genetic Programming but it is capable of evolving programs in an arbitrary language given by a user-provided context-free grammar. We present a way how to apply Multi-Gene idea, known from Multi-Gene Genetic Programming, to Grammatical Evolution, just by modifying the given grammar. We also describe modifications which improve the behavior of such algorithm, called Multi-Gene Grammatical Evolution. We compare the resulting system to GPTIPS, an existing implementation of MGGP.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JC - Computer hardware and software

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA15-22731S" target="_blank" >GA15-22731S: Symbolic Regression for Reinforcement Learning in Continuous Spaces</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the Companion Publication of the 2015 on Genetic and Evolutionary Computation Conference (GECCO 2015)

  • ISBN

    978-1-4503-3488-4

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    1217-1220

  • Publisher name

    ACM

  • Place of publication

    New York

  • Event location

    Madrid

  • Event date

    Jul 11, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article