All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Strong duality in Lasserre’s hierarchy for polynomial optimization

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00237256" target="_blank" >RIV/68407700:21230/16:00237256 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s11590-015-0868-5" target="_blank" >http://dx.doi.org/10.1007/s11590-015-0868-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11590-015-0868-5" target="_blank" >10.1007/s11590-015-0868-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Strong duality in Lasserre’s hierarchy for polynomial optimization

  • Original language description

    A polynomial optimization problem (POP) consists of minimizing a multivariate real polynomial on a semi-algebraic set $$K$$K described by polynomial inequalities and equations. In its full generality it is a non-convex, multi-extremal, difficult global optimization problem. More than an decade ago, J. B. Lasserre proposed to solve POPs by a hierarchy of convex semidefinite programming (SDP) relaxations of increasing size. Each problem in the hierarchy has a primal SDP formulation (a relaxation of a moment problem) and a dual SDP formulation (a sum-of-squares representation of a polynomial Lagrangian of the POP). In this note, we show that there is no duality gap between each primal and dual SDP problem in Lasserre’s hierarchy, provided one of the constraints in the description of set $$K$$K is a ball constraint. Our proof uses elementary results on SDP duality, and it does not assume that $$K$$K has a strictly feasible point.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Optimization Letters

  • ISSN

    1862-4472

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    8

  • Pages from-to

    3-10

  • UT code for WoS article

    000367895900002

  • EID of the result in the Scopus database

    2-s2.0-84953836305