Strong duality in Lasserre’s hierarchy for polynomial optimization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00237256" target="_blank" >RIV/68407700:21230/16:00237256 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11590-015-0868-5" target="_blank" >http://dx.doi.org/10.1007/s11590-015-0868-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11590-015-0868-5" target="_blank" >10.1007/s11590-015-0868-5</a>
Alternative languages
Result language
angličtina
Original language name
Strong duality in Lasserre’s hierarchy for polynomial optimization
Original language description
A polynomial optimization problem (POP) consists of minimizing a multivariate real polynomial on a semi-algebraic set $$K$$K described by polynomial inequalities and equations. In its full generality it is a non-convex, multi-extremal, difficult global optimization problem. More than an decade ago, J. B. Lasserre proposed to solve POPs by a hierarchy of convex semidefinite programming (SDP) relaxations of increasing size. Each problem in the hierarchy has a primal SDP formulation (a relaxation of a moment problem) and a dual SDP formulation (a sum-of-squares representation of a polynomial Lagrangian of the POP). In this note, we show that there is no duality gap between each primal and dual SDP problem in Lasserre’s hierarchy, provided one of the constraints in the description of set $$K$$K is a ball constraint. Our proof uses elementary results on SDP duality, and it does not assume that $$K$$K has a strictly feasible point.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Optimization Letters
ISSN
1862-4472
e-ISSN
—
Volume of the periodical
10
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
8
Pages from-to
3-10
UT code for WoS article
000367895900002
EID of the result in the Scopus database
2-s2.0-84953836305