All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Enhanced Symbolic Regression Through Local Variable Transformations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00316262" target="_blank" >RIV/68407700:21230/17:00316262 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21730/17:00316262

  • Result on the web

    <a href="http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006505200910100" target="_blank" >http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006505200910100</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5220/0006505200910100" target="_blank" >10.5220/0006505200910100</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Enhanced Symbolic Regression Through Local Variable Transformations

  • Original language description

    Genetic programming (GP) is a technique widely used in a range of symbolic regression problems, in particular when there is no prior knowledge about the symbolic function sought. In this paper, we present a GP extension introducing a new concept of local transformed variables, based on a locally applied affine transformation of the original variables. This approach facilitates finding accurate parsimonious models. We have evaluated the proposed extension in the context of the Single Node Genetic Programming (SNGP) algorithm on synthetic as well as real-problem datasets. The results confirm our hypothesis that the transformed variables significantly improve the performance of the standard SNGP algorithm.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 9th International Joint Conference on Computational Intelligence

  • ISBN

    978-989-758-274-5

  • ISSN

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    91-100

  • Publisher name

    SciTePress - Science and Technology Publications

  • Place of publication

    Porto

  • Event location

    Funchal, Madeira

  • Event date

    Nov 1, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article