All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An Improved Single Node Genetic Programming for Symbolic Regression

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F15%3A00239851" target="_blank" >RIV/68407700:21730/15:00239851 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=MIWqy6ryvpE=&t=1" target="_blank" >http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=MIWqy6ryvpE=&t=1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5220/0005598902440251" target="_blank" >10.5220/0005598902440251</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    An Improved Single Node Genetic Programming for Symbolic Regression

  • Original language description

    We have proposed three extensions of the standard Single Node GP, namely (1) a selection strategy for choosing nodes to be mutated based on the depth of the nodes, (2) operators for placing a compact version of the best tree to the beginning and to the end of the population, and (3) a local search strategy with multiple mutations applied in each iteration. All the proposed modifications have been experimentally evaluated on five symbolic regression problems and compared with standard GP and SNGP. The achieved results are promising showing the potential of the proposed modifications to significantly improve the performance of the SNGP algorithm

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JC - Computer hardware and software

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA15-22731S" target="_blank" >GA15-22731S: Symbolic Regression for Reinforcement Learning in Continuous Spaces</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 7th International Joint Conference on Computational Intelligence

  • ISBN

    978-989-758-157-1

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    244-251

  • Publisher name

    INSTICC Press

  • Place of publication

    Setúbal

  • Event location

    Lisabon

  • Event date

    Nov 12, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article