All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hybrid Single Node Genetic Programming for Symbolic Regression

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F16%3A00316259" target="_blank" >RIV/68407700:21730/16:00316259 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21230/16:00316259

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-662-53525-7_4" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-662-53525-7_4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-662-53525-7_4" target="_blank" >10.1007/978-3-662-53525-7_4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hybrid Single Node Genetic Programming for Symbolic Regression

  • Original language description

    This paper presents a first step of our research on designing an effective and efficient GP-based method for symbolic regression. First, we propose three extensions of the standard Single Node GP, namely (1) a selection strategy for choosing nodes to be mutated based on depth and performance of the nodes, (2) operators for placing a compact version of the best-performing graph to the beginning and to the end of the population, respectively, and (3) a local search strategy with multiple mutations applied in each iteration. All the proposed modifications have been experimentally evaluated on five symbolic regression benchmarks and compared with standard GP and SNGP. The achieved results are promising showing the potential of the proposed modifications to improve the performance of the SNGP algorithm. We then propose two variants of hybrid SNGP utilizing a linear regression technique, LASSO, to improve its performance. The proposed algorithms have been compared to the state-of-the-art symbolic regression methods that also make use of the linear regression techniques on four real-world benchmarks. The results show the hybrid SNGP algorithms are at least competitive with or better than the compared methods. Springer-Verlag Berlin Heidelberg 2016.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA15-22731S" target="_blank" >GA15-22731S: Symbolic Regression for Reinforcement Learning in Continuous Spaces</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Transactions on Computational Collective Intelligence XXIV

  • ISBN

    978-3-662-53524-0

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    22

  • Pages from-to

    61-82

  • Publisher name

    Springer Berlin Heidelberg

  • Place of publication

    Berlin

  • Event location

    Lisabon

  • Event date

    Nov 12, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article