Hybrid Single Node Genetic Programming for Symbolic Regression
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F16%3A00316259" target="_blank" >RIV/68407700:21730/16:00316259 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/16:00316259
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-662-53525-7_4" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-662-53525-7_4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-662-53525-7_4" target="_blank" >10.1007/978-3-662-53525-7_4</a>
Alternative languages
Result language
angličtina
Original language name
Hybrid Single Node Genetic Programming for Symbolic Regression
Original language description
This paper presents a first step of our research on designing an effective and efficient GP-based method for symbolic regression. First, we propose three extensions of the standard Single Node GP, namely (1) a selection strategy for choosing nodes to be mutated based on depth and performance of the nodes, (2) operators for placing a compact version of the best-performing graph to the beginning and to the end of the population, respectively, and (3) a local search strategy with multiple mutations applied in each iteration. All the proposed modifications have been experimentally evaluated on five symbolic regression benchmarks and compared with standard GP and SNGP. The achieved results are promising showing the potential of the proposed modifications to improve the performance of the SNGP algorithm. We then propose two variants of hybrid SNGP utilizing a linear regression technique, LASSO, to improve its performance. The proposed algorithms have been compared to the state-of-the-art symbolic regression methods that also make use of the linear regression techniques on four real-world benchmarks. The results show the hybrid SNGP algorithms are at least competitive with or better than the compared methods. Springer-Verlag Berlin Heidelberg 2016.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA15-22731S" target="_blank" >GA15-22731S: Symbolic Regression for Reinforcement Learning in Continuous Spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Transactions on Computational Collective Intelligence XXIV
ISBN
978-3-662-53524-0
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
22
Pages from-to
61-82
Publisher name
Springer Berlin Heidelberg
Place of publication
Berlin
Event location
Lisabon
Event date
Nov 12, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—